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SUMMARY

In this paper, alternative formulations of the steady Euler equations for conservation of mass, momentum and
energy are adopted for the numerical simulation of compressible ¯ows with shock waves. The total enthalpy is
assumed to be constant and hence an isentropic density is calculated in terms of the velocity components. Also,
the x- and y-momentum equations written in conservation form are combined to yield the tangential and normal
momentum equations. For smooth ¯ows the tangential momentum equation reduces to the entropy transport
equation, while the normal momentum equation gives the vorticity in terms of the entropy gradient normal to the
¯ow direction (Crocco's relation). Hence the velocity components can be obtained from the continuity equation
and normal momentum equation (Cauchy=Riemann equations), while the entropy correction for the density is
obtained from the tangential momentum equation (this correction is not needed in the isentropic ¯ow regions).
The present formulation can be easily extended to handle variable total enthalpy. Preliminary results are
presented for transonic and supersonic ¯ows over aerofoils and the entropy and vorticity effects are clearly
identi®ed. # 1998 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 27: 127±138 (1998)

KEY WORDS: compressible ¯ow; supersonic ¯ows; aerofoils; Cauchy/Riemann equations; Crocco's relation

1. INTRODUCTION

In the last two decades, intensive efforts have been directed to the solution of the Euler equations in

conservation form, with great success (see e.g. References 1 and 2). One can argue, however, that for

most external aerodynamic applications in the transonic and supersonic regimes the inviscid ¯ow is

mainly isentropic and irrotational, except for regimes behind curved shocks. Therefore it is desirable

to identify entropy and vorticity effects and to calculate them only in the regions where they do not

vanish. Hopefully such a strategy will lead to more ef®cient and accurate calculations. The main idea

is to decouple the acoustics from entropy and vorticity modes. One way to achieve this goal is to

detect the shock location and slope and explicitly impose the entropy jump across the shock as an

internal boundary condition for the ¯ow downstream of the shock. Algorithms based on this approach

have been developed by the ®rst author in References 3 and 4. Recent calculations using entropy, a

modi®ed density and velocity components as dependent variables are presented in the Appendix

following the work of Tang and Hafez.5 The shock detection problem, however, may require
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complicated logic, particularly for three-dimensional ¯ows.

Other algorithms with shocks automatically captured are proposed by Paillere et al.6 and Ta'asan.7

The motivation in Reference 6 is to construct a genuinely multidimensional upwinding scheme. This

can be accomplished at least for the scalar entropy and total enthalpy equations. Local transformation

is then used to obtain the solution in terms of the conservative variables. The motivation in Reference

7 is to implement multigrid ef®ciently to solve the Euler equations for steady compressible ¯ows.

However, only subsonic ¯ow results have been presented, and since staggered grids are used, a

discrete potential exists and fast convergence is expected for such an elliptic system.

In the present work an alternative formulation based on the Cauchy=Riemann equations and

Crocco's relation is adopted. A modi®ed density in terms of the velocity components and total

enthalpy is introduced with an entropy correction calculated from the tangential momentum equation.

The velocity components are obtained from the continuity and normal momentum equations

assuming the entropy is known and the process is repeated until convergence.

For isentropic, irrotational ¯ows, only the Cauchy=Riemann equations are solved for the velocity

components with density obtained from Bernoulli's law. This subset is valid, for example, in the far

®eld where the ¯ow is smooth or shock waves are weak.

The present formulation can be numerically implemented using a ®nite element=®nite volume

discretization procedure and a balanced arti®cial viscosity discussed in Reference 4. For convenience

a simpli®ed version of this procedure for regular grids is used here. With small arti®cial viscosity

coef®cients, pseudo-time-dependent terms are added to the equations to enhance the diagonal

dominance of the algebraic equations. A line relaxation procedure with a 262 block tridiagonal

solver is used to solve the linearized equations for the velocity components and a scalar tridiagonal

solver is used for the entropy correction.

Preliminary results are presented for transonic and supersonic ¯ows over aerofoils. The

formulation is tested ®rst for a quasi-one-dimensional supersonic ¯ow in a divergent nozzle and

for a two-dimensional shock re¯ection problem.

2. PROBLEM FORMULATION

To demonstrate the feasibility of the present formulation, a supersonic ¯ow with a shock wave in a

divergent nozzle is studied. The quasi-one-dimensional Euler equations can be written in the form

�ruA�x � 0; �1�
�ru2A�x � �Ap�x � Ax p; �2�
g

gÿ 1

p

r
� 1

2
u2 � H � g� 1

2�gÿ 1� : �3�

Let us introduce the variables ri and pi such that

r � riE and p � piE; �4�
where

E � eÿDs=R;

also

pi � rgi =g: �5�
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It is clear then that ri can be obtained from Bernoulli's law (equation (3)) and equations (1) and (2)

can be solved for u and E. In other words, the speed and entropy are updated to satisfy the continuity

and momentum equations respectively.

For two-dimensional ¯ows the standard governing equations are

�ru�x � �rv�y � 0; �6�
�ru2�x � �ruv�y � px � 0; �7�
�ruv�x � �rv2�y � py � 0; �8�

g
gÿ 1

p

r
� 1

2
�u2 � v2� � 1

gÿ 1

1

M 21
� 1

2
: �9�

With the tangency condition at solid surfaces and proper far-®eld behaviour, one can obtain a solution

of the above system of equations.

Here the x- and y-momentum equations (7) and (8) are combined to produce the normal and

tangential momentum equations, namely

u��ruv�x � �rv2�y � py� ÿ v��ru2�x � �ruv�y � px� � 0; �10�
u��ru2�x � �ruv�y � px� � v��ruv�x � �rv2�y � py� � 0: �11�

For smooth ¯ows, equation (10) reduces to

ÿuy � vx �
p

rq

u

q

@�Ds=R�
@y

ÿ v
q

@�Ds=R�
@x

� �
; �10a�

while equation (11) becomes

ru
Ds

R

� �
x

� rv
Ds

R

� �
y

� 0: �11a�

Introducing the variables ri and pi de®ned by (4), where pi is proportional to rgi , Bernoulli's law

(equation (9)) provides a formula for ri in terms of the speed:

ri � 1ÿ gÿ 1

2
M2
1�u2 � v2 ÿ 1�

� �1=�gÿ1�
: �12�

Assuming the entropy is known, equations (6) and (10) are solved to obtain u and v. It is important to

account properly for the non-linearity of these equations; in particular, the dependence of ri on u and

v is responsible for their mixed-type (hyperbolic=elliptic) nature. It is also interesting to notice that

this system has the same form of characteristics as the irrotational, isentropic ¯ow equations. The

entropy function E is then updated from (11) and the process is repeated until convergence.

In the smooth ¯ow regions, equations (10) and (11) can be replaced by equations (10a) and (11a).

However, the latter are not valid across shocks. Entropy is generated across a shock wave to satisfy

the momentum equations. Equation (10a) relates the vorticity to the variation in entropy from one

streamline to another, while equation (11) implies that entropy is constant along a streamline.

If the total enthalpy is not constant everywhere, the energy equation for adiabatic ¯ows implies that

H must be constant along a streamline, i.e.

�ruH�x � �rvH�y � 0: �13�
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This scalar equation must be solved, with the given inlet condition, to obtain the distribution of H. In

this case, ri is calculated from the equation

ri � f�gÿ 1�M2
1�H ÿ 1

2
�u2 � v2��g1=�gÿ1�: �14�

Equation (10) will also be modi®ed to read

ÿuy � vx �
p

rq

u

q

@�Ds=R�
@y

ÿ v
q

@�Ds=R�
@x

� �
ÿ 1

q

u

q

@H

@y
ÿ v

q

@H

@x

� �
: �15�

In the following the numerical results of some preliminary calculations are discussed.

3. NUMERICAL RESULTS

3.1. Nozzle ¯ow

Consider supersonic ¯ow in a divergent nozzle. The parameters at the throat of the nozzle are

r*� 1, u*� 1, M*� 1, A*� 1 and p� � 1=g � 0�714. The exit pressure pe is 1�018. The grid consists

of 121 points.

The convergence history and numerical results are shown in Figure 1. The shock location is

identi®ed with the maximum entropy increase ((Ds=R�max). The numerical results are in good

agreement with the exact solution.

3.2. Parabolic arc aerofoil at t� 0�1 in subsonic ¯ow

To test the two-dimensional programme, subsonic ¯ow at M1 � 0�5 is calculated over a thin

aerofoil with and without the entropy corrections. Figure 2(a) shows the Mach number contours and

Figure 2(b) gives the Cp distributions in both cases. As expected, the two results are almost identical.

Figure 1. Nozzle (pe� 1�018) convergence history and results: (a) Rmax � �Dr�max; (b) Rave, average values of Dr; (c) location
of shock; (d) entropy distribution; (e) Cp distribution; (f) Mach number distribution
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Figure 2. Parabolic arc aerofoil (t� 0�1, M1 � 0�5): (a) Mach number contours; (b) Cp distributions with and without entropy
correction

Figure 3. Shock re¯ection (M1 � 2�9): (a) pressure contours; (b) density at y� 0�25

SIMULATION OF STEADY COMPRESSIBLE FLOWS 131

# 1998 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 27: 127±138 (1998)



3.3. Shock re¯ection in supersonic ¯ow

In this example a shock is formed from the leading edge of a wedge at d� 10�93�. The incoming

¯ow Mach number is 2�9. The pressure contours and density distribution at y� 0�25 are presented in

Figure 3. Again the numerical results are in agreement with the exact solution.

3.4. Parabolic arc aerofoil at t� 0�2 in transonic ¯ow

Transonic ¯ow passing the parabolic arc aerofoil is calculated for M� 0�8. Figure 4(a) gives the Cp

distributions for both isentropic and non-isentropic cases. It is shown that the shock moves upstream

and becomes weaker if entropy correction is accounted for. The entropy contours are shown in Figure

4(b). Figures 4(c) and 4(d) give a comparison of the pressure contours of both cases.

Figure 4. Parabolic arc aerofoil (t� 0�2, M1 � 0�8): (a) Cp distributions; (b) entropy contours; (c) pressure contours for
non-isentropic ¯ow; (d) pressure contours for isentropic ¯ow
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3.5. NACA 0012 aerofoil in transonic ¯ow

Another transonic problem is calculated for ¯ow passing an NACA 0012 aerofoil at M1 � 0�85.

Figure 5 shows the corresponding results.

3.6. NACA 0012 aerofoil in supersonic ¯ow

For a freestream Mach number of 1�4 a bow shock is formed near the leading edge and an oblique

shock is formed at the trailing edge. The bow shock moves upstream and becomes weaker for non-

isentropic ¯ow. The numerical results are shown in Figure 6. Similar results were obtained for

another example with a freestream Mach number of 1�6 where the shock is stronger (Figure 7).

Figure 5. NACA 0012 aerofoil (M1 � 0�85): (a) Cp distributions; (b) entropy contours; (c) pressure contours for non-isentropic
¯ow; (d) pressure contours for isentropic ¯ow
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4. CONCLUDING REMARKS

The preliminary results are encouraging. Further studies are needed, however, to assess the merits and

exploit the advantages of the present formulation.
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Figure 6. NACA 0012 aerofoil (M1 � 1�4): (a) Cp distributions; (b) entropy contours; (c) pressure contours for non-isentropic
¯ow; (d) pressure contours for isentropic ¯ow
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APPENDIX

Calculation of non-isentropic ¯ows based on shock detection

Here the calculation of a non-isentropic ¯ow based on the entropy generated across a shock wave is

discussed. First the shock wave location and slope are detected, then the entropy jump is calculated in

terms of the Mach number upstream of the shock. The distribution of the entropy downstream of the

shock is obtained from the entropy transport equation. Hence the vorticity is evaluated using

Crocco's relation. The Cauchy=Riemann equations are solved for the velocity components assuming

the entropy and vorticity are known and the process is repeated until convergence.

The governing equations are

�ru�x � �rv�y � 0; �16�
ÿuy � vx � o; �17�

Figure 7. NACA 0012 aerofoil (M1 � 1�6): (a) Cp distributions; (b) entropy contours; (c) pressure contours for non-isentropic
¯ow; (d) pressure contours for isentropic ¯ow
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where

r � 1ÿ gÿ 1

2
M2
1�u2 � v2 ÿ 1�

� �1=�gÿ1�
eÿDs=R;

ru
Ds

R

� �
x

� rv
Ds

R

� �
y

� 0; �18�

o � p

rq

u

q

@�Ds=R�
@y

ÿ v
q

@�Ds=R�
@x

� �
: �19�

Figure 8. Grid for NACA 0012 aerofoil at zero angle of attack

Figure 9. NACA 0012 aerofoil (M1 � 0�86) Cp distribution

INT. J. NUMER. METH. FLUIDS, VOL. 27: 127±138 (1998) # 1998 John Wiley & Sons, Ltd.

136 M. HAFEZ AND W. H. GUO



Simulation of a transonic ¯ow over an aerofoil using an arti®cial viscosity method and a ®nite

element=®nite volume discretization procedure over triangles similar to Reference 5 gives the results

shown in Figure 9. The grid is shown in Figure 8. The result of the isentropic irrotational ¯ow model

(s� constant, o� 0) is compared with that of the non-isentropic rotational ¯ow. The latter is in

agreement with Jameson's FLO 52 calculations.

The problem of the shock detection, to calculate the boundary condition for the entropy equation,

requires a special programming logic. Notice that entropy and vorticity are calculated only

downstream of the shock, where they vary.

Calculations of subsonic lifting ¯ows based on Cauchy=Riemann equations

For irrotational, isentropic ¯ows the governing equations, conservation of mass and vorticity

de®nition, are solved for the two velocity components, while the density is obtained from Bernoulli's

law. On the differential level a potential function can be introduced and its gradient is the velocity

Figure 10. Cp distribution over NACA 0012 at 10� and M1 � 0�3

Figure 11. Mach number contours (levels vary from 0�025 to 0�9 with increments of 0�025)
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vector. On the discrete level, however, a discrete potential may only exist for certain grids. In general,

the difference between the discrete Cauchy=Riemann equations and the discrete potential equation is

of the order of the truncaton error.

It is well known that a Kutta condition is necessary to solve the potential equation for lifting ¯ows.

For isentropic cases the ¯ow should leave the aerofoil in the direction bisecting the trailing edge

angle. Such a condition can be imposed explicitly in Euler calculations as well (see Reference 8 for

more details). However, for the equivalent Cauchy=Riemann equations we will demonstrate that

accurate solutions can be obtained using arti®cial viscosity methods as in standard Euler calculations.

In Figure 10 the pressure distribution for an NACA 0012 aerofoil at 10� and M1 � 0�3 is plotted. The

agreement with the results of either FLO 36 or FLO 52-S of Reference 9 is excellent. The

corresponding Mach number contours are plotted in Figure 11.
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